Tsunami: Ocean dynamo generator

نویسندگان

  • Hiroko Sugioka
  • Yozo Hamano
  • Kiyoshi Baba
  • Takafumi Kasaya
  • Noriko Tada
  • Daisuke Suetsugu
چکیده

Secondary magnetic fields are induced by the flow of electrically conducting seawater through the Earth's primary magnetic field ('ocean dynamo effect'), and hence it has long been speculated that tsunami flows should produce measurable magnetic field perturbations, although the signal-to-noise ratio would be small because of the influence of the solar magnetic fields. Here, we report on the detection of deep-seafloor electromagnetic perturbations of 10-micron-order induced by a tsunami, which propagated through a seafloor electromagnetometer array network. The observed data extracted tsunami characteristics, including the direction and velocity of propagation as well as sea-level change, first to verify the induction theory. Presently, offshore observation systems for the early forecasting of tsunami are based on the sea-level measurement by seafloor pressure gauges. In terms of tsunami forecasting accuracy, the integration of vectored electromagnetic measurements into existing scalar observation systems would represent a substantial improvement in the performance of tsunami early-warning systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three Dimensional Numerical Simulation of Tsunami Generation and Propagation Due to Makran Subduction and run-up on Chabahar Bay and Makran Coasts

Makran subduction located at the northwest of the Indian Ocean nearby the southern coast of Iran and Pakistan. Makran subduction is the source of tsunamis that threaten southern coast of Iran. In this article, generation and propagation of 1945’s tsunami initiated by Makran subduction is simulated. For the three dimensional generation of the wave, advanced algorithm of Okada is adopted. The CFD...

متن کامل

Tsunami Vulnerability Mapping Using Remote Sensing and GIS Techniques: A Case Study of Kollam District, Kerala, India

Tsunamis are caused by the displacement of a large volume of water, generally in an ocean or a sea. Earthquakes, volcanic eruptions and other underwater explosions, landslides, glacier calvings, meteorite impacts and other disturbances above or below water have the potential to generate a tsunami. The coastal areas of Kollam district, the present study area was seriously affected by the catastr...

متن کامل

Combining measurements and models for real-time tsunami forecast

Since the 2004 Indian Ocean tsunami, the most destructive tsunami in recorded history, worldwide awareness of tsunami hazard has peaked and global expansion of tsunami forecasting tools has made dramatic progress in both instruments and technology. Two of the most seminal advances in tsunami forecast since the Indian Ocean tsunami are: 1) the deployment of an extensive network of sensors to acq...

متن کامل

Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami

The December 2004 Indian Ocean tsunami was the worst tsunami disaster in the world’s history with more than 200,000 casualties. This disaster was attributed to giant size (magnitude M ~ 9, source length >1000 km) of the earthquake, lacks of expectation of such an earthquake, tsunami warning system, knowledge and preparedness for tsunamis in the Indian Ocean countries. In the last ten years, sei...

متن کامل

Feasibility of a magma ocean dynamo on Mars

Crustal magnetization of rocks in regions of Mars surface testifies to an era of dynamo activity. I examine the possibility that the dynamo that operated then, in the first 400–600 Ma after Mars formed, was powered by a crystallizing subsurface magma ocean. Of the ways that a magma ocean dynamo could operate, on Mars only turbulent and magnetostrophic dynamos seem feasible; geostrophic dynamos ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014